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Abstract 
 

A stable, accurate and computationally efficient 
strategy termed Generalized Data Reduction 
(GDR) was recently developed to support rocket 
engine analysis.   The GDR technique is suitable 
for the simultaneous real-time estimation of 
numerous rocket engine health parameters.  As 
such, it has the potential to serve as the 
foundation for both real-time and post-test/flight 
rocket engine health monitoring.  The previously 
proposed algorithm has been extended and 
extensively tested using MC-1 test data.  
Excellent agreement is shown between GDR and 
conventional post-test data reduction results for 
these test data.  Results of simulated anomaly 
studies are presented to demonstrate GDR’s 
abili ty to identify the causal source of small-
scale anomalies.  Likewise, the robust response 
of GDR to missing sensor data is shown through 
simulated sensor elimination results.  Finall y, the 
efficacy of the GDR approach with a small 
flight-like sensor suite is demonstrated.   
 

Introduction 
 
Monitoring the health of rocket engine systems 

is essentially a two phase process.  The 
acquisition phase involves sensing physical 
conditions at selected locations, converting 
physical input to electrical signals, conditioning 
the signals as appropriate to establish scale or 
filter interference, and recording results in an 
easy to interpret form.  The inference phase 
involves analysis of results from the acquisition 
phase, comparison of analysis results to 
established health measures, and assessment of 
health indications.   
 
A variety of analytical schemes can be employed 
in the inference phase of health monitoring.  
These schemes can be categorized as statistical, 
model-based, and rule-based.  Statistical analysis 
methods can provide excellent comparative 
measures of engine operating health.  They 
generally require well-characterized data from an 
ensemble of “ typical” engines, or “golden” data 
from a specific test assumed to define the 
operating norm, in order to establish reliable 
comparative measures.  Statistical methods are 
generally suitable for real-time health monitoring 
because they do not deal with the physical 
complexities of engine operation.  The util ity of 
statistical methods in rocket engine health 
monitoring is hindered by practical l imits on the 
quantity and quali ty of available data.  This is 
due to the difficulty and high cost of data 
acquisition, the limited number of available test 
engines, and the problem of simulating flight 
conditions in ground test faciliti es.  In addition, 
statistical methods incur a penalty for 
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disregarding flow complexity and are therefore 
limited in their abil ity to define performance 
shift causality. 
 
Rule-based methods infer the health state of the 
engine system based on comparison of individual 
measurements or combinations of measurements 
with defined health norms or rules.  This does 
not mean that rule-based methods are necessarily 
simple.  Although binary yes-no health 
assessments can sometimes be established by 
relatively simple rules, the causality assignment 
needed for refined health monitoring often 
requires an exceptionally complex rule base 
involving complicated logical maps.  Structuring 
the rule-based system to be clear and 
unambiguous can be quite difficult, and the 
expert input required to establish and maintain a 
large logic network and associated rule base can 
be prohibitive. 
 
Model-based methods incorporate physical 
relations and empiricisms in the inference phase 
of health monitoring.  Such methods are 
typically more involved because the flow physics 
of rocket engines is generally described by 
complex, highly interdependent, nonlinear 
relations.  The attending computational 
complexity may present an impediment to the 
use of certain model-based methods in real-time 
health monitoring.  However, the addition of 
physical detail does provide a basis for 
determining performance shift causali ty at the 
component level. 
 
In this paper we describe a model-based method 
identified as Generalized Data Reduction (GDR) 
which has been developed for the inference 
phase of health monitoring.  At the highest level, 
GDR can be considered a strategy for solving the 
inverse performance analysis problem often 
referred to as data reduction.  More specifically, 
the method employs a canonical representation 
of the engine system performance model to 
estimate the operating characteristics of 
hardware components such as pumps, turbines, 
injectors, and orifices consistent with test data.  
Computational economy provided by the 
simplified performance representation 
establishes GDR as a real-time health monitoring 
tool. 
 
Results of extensive computational experience 
with the GDR procedure applied to MC-1 
(formerly known as Fastrac) engine data are 
reported.  Data from a recent series of MC-1 

engine tests conducted at Rocketdyne’s Santa 
Susana test facili ty are used in this investigation 
of GDR capabili ty.  Comparisons of GDR 
hardware predictions with those of the parent 
engine system performance model are presented.  
These results are used to assess fideli ty loss 
associated with the simplified representation of 
the parent model used by GDR.  The abili ty of 
GDR to recover simulated anomalies is 
demonstrated, information loss associated with 
single sensor failures is described, and GDR 
modifications to improve hardware recovery 
with specific sensor failures are outlined.  To 
better assess flight health monitoring capabili ty, 
GDR hardware recovery results using a restricted 
flight measurement set are presented.  
Computational results from a GDR refinement 
that employs engine acceptance test information 
to augment flight measurements is also 
described.    
 

Generalized Data Reduction 

In order to establish a logical context for data 
reduction, it is important to begin with a general 
description of rocket engine performance 
analysis. The objective of performance analysis 
is to predict engine system operating conditions, 
P, for a specific control state, C, using 
mathematical models of both physical and 
empirical relations, F.  Standard engineering 
models of hardware function within an engine 
typically contain a number of f ixed parameters, 
H, whose values are estimated from accumulated 
test experience. The set of operating conditions, 
P, includes temperatures, pressures, and flows at 
defined locations within the engine system. The 
control state, C, of an engine is defined by 
commanded hardware settings such as valve 
positions, as well as flow field conditions at the 
system boundaries.  
 
Performance Analysis Problem 
 
Find  P  such that  
 

F ( P ; C, H )  =  0      (1) 
 
F set of physical and empirical relations 
P set of physical conditions 
C set of system control and boundary settings 
H set of hardware parameters 
 
For a specific engine system, performance model 
predictions for the operating conditions, P, 
seldom agree precisely with measured values of 
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these parameters. Model calibration enforces 
agreement. To describe the calibration process, 
termed data reduction, it is convenient to first 
define the following operating condition and 
hardware parameter partitions: 
 

P  =  {Pm, Pt}   H  =  {Ha, H f}   (2) 
 
Pm  modeled physical conditions 
Pt  test measured physical conditions 
Ha  adjustable hardware parameters  
H f  fixed hardware parameters 
 
In order to tune the performance model for a 
specific engine configuration, Ha values are 
adjusted to attain model agreement with the most 
current test data T for the selected physical 
parameters Pt. The conventional method for 
effecting this agreement is to solve for the 
operating conditions P and hardware adjustments 
Ha simultaneously, effectively coupling the 
performance prediction and data reduction 
processes. The coupled data reduction problem is 
described in detail i n reference [1].  The 
linearized decoupled data reduction problem is 
described below. 
 
Linear Decoupled Data Reduction Problem 
 
Determine Ha such that 

 
Fc (Ha ; Pt , C)  =  Pt – Pto – JHao (Ha–Hao)             

- JCo (C–Co)  =  0 
 

Pt  =  T      
 
or equivalently 
 
T – Pto =  JHao (Ha–Hao)  +  JCo (C–Co)           (3) 

 
where 

JHao = 



∂Pti

∂Haj o
  JCo = 



∂Pti

∂Cj o
  

 
JHao  Jacobian of Pt with respect to Ha at base 

state o  
JCo  Jacobian of Pt with respect to C at base 

state o  
 
Hao and Co represent values of the adjustable 
hardware characteristics and control conditions 
at a defined base state typical of engine 
operation.  Pto is the performance model solution 
for the measured parameters at the base 
conditions.  The Jacobian matrices JHao and JCo 

are composed of the first order influences of the 
adjustable hardware and control settings 
respectively.  Performance model simulation 
results are used to derive finite difference 
approximations of the appropriate partial 
derivatives at the base state; these partial 
derivatives establish the entries in the influence 
matrices.  A detailed description of the GDR 
development strategy, including the subset 
selection process which systematically 
eliminates parameter redundancy, is given in 
reference [1]. 
 
A natural row partition of equation system (3) is 
defined by the measurements selected for use in 
data reduction.  The reduced form of equation 
system (3), using only selected measurements s, 
takes the form below: 
 
Ts-Ptso = JHso (Ha-Hao)  + JCso (C-Co)   (4) 
 
In this relation, Ts-Ptso represents the difference 
between test data and computed values for the 
set of measurement parameters retained by the 
subset selection process. Equation system (4) is 
solved for the adjustable hardware characteristics 
Ha to complete the data reduction process. 
 
There is generally an infinite number of 
candidate solutions to the underdetermined 
system described in equation (4); therefore, a 
closure principle must be adopted to identify the 
most appropriate solution. Since the performance 
model contains the condensed archive of test 
experience, it is logical to assume that the most 
likely operating state of the engine will require 
the smallest shift in hardware state consistent 
with observation. This provides an effective 
closure principle and suggests a data reduction 
formulation based on the optimization problem 
identified below. 
 
GDR Optimization Problem 
 
GDR optimization involves minimizing 

(∆∆Ha)
T W ∆∆Ha 

 
by selecting 

∆∆Ha = Ha – Hao             (5) 
 

subject to 
Ts-Ptso = JHso (Ha-Hao) + JCso (C-Co) = 0 
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The GDR optimization problem is an equality-
constrained weighted least squares problem. The 
user-specified diagonal weighting matrix W
provides a simple mechanism for expert input 
based on perceived maturity of hardware 
component modeling.  The problem solution 
specifies baseline hardware shifts with the 
smallest weighted least squares value consistent 
with agreement of test data and computed values 
for a stable set of measured parameters.  
Eff icient quadratic programming strategies as 
well as full rank SVD methods may be used to 
solve problems of this type.2,3  The reader is 
referred to reference [1] for a complete outline of 
the GDR setup and solution processes. 

 
Restrictions imposed by the linearization can be 
relaxed by considering appropriate combinations 
of measured parameters, control conditions, 
and/or hardware characteristics in the reduction 
process.  An extended procedure, based on 
combinations of parameters, can be described in 
functional form as follows.  
 
Extended GDR Optimization Problem 
 
Extended GDR optimization involves 
minimizing 

(∆∆h)T W ∆∆h 
 

by selecting 
∆∆h = h – ho         (6) 

 
subject to 

p(Ts) – p(Ptso) = Jho (h-ho) + Jco (c-co) = 0 
 
where 
 
h = h(Ha) set of independent functions of 

adjustable hardware parameters 
p = p(Pts) set of independent functions of 

selected measurements 
c = c(C) set of independent functions of 

control settings 
 

Jho = 



∂pi

∂hj o
  Jacobian of measurement 

functions p with respect to 
hardware functions h at base   
state o 

 

Jco = 



∂pi

∂cj o
  Jacobian of measurement 

functions p with respect to control 
functions c at base state o 

 
Appropriate selection of the function sets can be 
used to mitigate computational stabilit y 
problems and accommodate nonlinear effects.  
Results presented later in this paper were derived 
as solutions to the extended GDR optimization 
problem constructed specifically for the MC-1 
engine system. 
 

MC-1 Engine and Analysis Background 
 
The MC-1 engine is a 60,000 lb vacuum thrust, 
pump-fed liquid fuel rocket engine that was 
developed by the NASA Marshall Space Flight 
Center (MSFC).4  The engine burns a mixture of 
RP-1 hydrocarbon fuel and liquid oxygen.  Hot 
gas produced by a gas generator is used to power 
a turbine that rotates an inline turbopump 
assembly.  The engine uses five fixed orifices to 
control engine thrust and mixture ratio. These are 
the gas generator liquid oxidizer orifice, the gas 
generator RP-1 orifice, the main liquid oxidizer 
orifice, the main RP-1 orifice, and the turbine 
exhaust nozzle orifice.  The MC-1 engine is 
intended to be reusable with the exception of the 
ablative nozzle. 
 
Three series of MC-1 tests were recently 
conducted on Rocketdyne’s Santa Susana Field 
Laboratory Alfa-1 test stand in California.  The 
R1 series was focused on resolving any issues 
associated with the new test stand.  The R2 and 
R3 series consisted of tests to calibrate Engine 3 
and Engine 5, respectively.  Engines 1 and 2 had 
previously been tested in the horizontal test 
facili ty at the NASA Stennis Space Center 
(SSC), and Engine 3 had previously been tested 
at the Propulsion Test Article Facili ty at SSC.  
The R2 series used a 15:1 area ratio nozzle and 
the R3 series used a 30:1 area ratio nozzle; both 
series were conducted at test stand altitude.  Due 
to separated flow effects inherent in the R3 series 
tests, only R2 series data sets were utili zed in 
this study.  The R2 series consisted of 5 
mainstage tests; the first four – R2-1, R2-2, R2-
3a and R2-3b - were 24 seconds in duration, and 
the final test – R2-4 – was a full duration test of 
159 seconds. 
 
The tests had varying objectives.5  R2-1 
established an engine calibration baseline.  R2-2 
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investigated the effect of LOX inlet pressure 
variations on pump run characteristics.  R2-3a 
was intended to evaluate engine calibration in 
response to an orifice change; however, due to a 
leak in the oxidizer bleed valve, this was not 
accomplished until test R2-3b.  Finally, R2-4 
was intended to assess engine calibration during 
full duration (159 seconds) test.  The turbine 
exhaust nozzle orifice was not changed during 
the R2 series.  All other orifices were changed 
after tests R2-2 and R2-3b.  Therefore, tests R2-1 
and R2-2 contained identical orifice 
configurations, as did tests R2-3a and R2-3b. 
 
A ROCETS6 performance model of the MC-1 
engine was developed at MSFC to support 
engine design and testing.  Fluid conditions in all 
of the major engine components and flow ducts 
were modeled using one-dimensional flow 
physics and empiricisms.  This model is the 
simulation platform used to generate the engine 
system influence matrices for GDR analyses.  In 
addition, a modified form of this performance 
model provided the conventional data reduction 
results used to assess the quali ty of GDR 
predictions. 
 
For computational testing of the GDR strategy, a 
total of 25 engine measurements, corresponding 
to performance model variables, was employed.  
These measurements, and their associated model 
variable names, are given in Table 1.  They 
include four engine inlet condition measurements 
and 21 internal engine measurements.  Included 
in the measurements list are fourteen pressures, 
seven temperatures, two flows, one turbopump 
shaft speed, and one engine thrust.  A total of 17 
hardware parameters was selected for use in 
GDR analyses.  These 17 hardware 
characteristics, also given in Table 1, were based 
on those employed to perform conventional data 
reduction analyses.  Included are six duct/line 
resistances, four injector resistances, two pump 
head coefficient multipliers, and one each heat 
transfer rate, combustion efficiency, nozzle 
discharge coefficient, orifice discharge 
coeff icient, and turbopump power factor.  These 
engine characteristics 1) are easily derived from 
the parameter set used for conventional post-test 

data reduction, 2) allow systematic incorporation 
of nonlinear effects in a form appropriate for the 
extended GDR optimization problem described 
in the previous section and 3) lead to enhanced 
computational stabili ty. 
 
All of the hardware parameters described in 
Table 1 are standard engine parameters, with the 
exception of the power factor term, PWRFACT.   
The power factor provides a measure of the 
discrepancy between the standard turbopump 
efficiency computed from performance model 
maps, and the actual turbopump efficiency 
indicated by test data.  Use of the power factor 
instead of individual pump and turbine 
efficiencies was motivated by both uncertainty 
and stabili ty considerations. 
 
All of the measurements indicated in Table 1 
would not typicall y be available on a flight 
engine.  As part of the former X-34 program, for 
example, the MC-1 engine was expected to have 
only the following sensors: the liquid oxidizer 
pump discharge pressure, the RP-1 pump 
discharge pressure, the main chamber pressure, 
the turbine inlet pressure and the turbine inlet 
temperature.  Engine inlet temperatures and 
pressures would be provided as part of the 
vehicle main propulsion system data.  With such 
a reduced measurement list, the estimable 
hardware parameters would require 
consolidation.  The reduced hardware set used 
for flight engine analyses includes 
ECSMMCHB, PSIMOPMP, PSIMKPMP and 
PWRFACT from the original set in Table 1, as 
well as new hardware parameter combinations 
defined in Table 2. 
 

Results 
 
In order to assess the potential of the GDR 
strategy for a health monitoring (HM) 
application, it is necessary to examine reduction 
results for accuracy, computational efficiency, 
reliabili ty, and anomaly detection capabili ty.  An 
investigation of GDR suitabili ty for HM was 
conducted using R2 series data from the MC-1 
engine test program.   
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Comparison with ROCETS/MC-1 Data 
Reduction Results 
 
In order to assess the accuracy of GDR results, it 
is necessary to adopt a standard of comparison.  
The GDR procedure relies upon a parent 
performance model to establish the functional 
relationships between hardware variation and 
measured parameter changes.  Since the parent 
model currently provides the accepted data 
reduction results used in post-test review, the 
data reduction results from this parent model are 
the de facto standard.   

  Physical Measurements   Hardware Parameters 

  Engine Inlet     

1 Engine LOX Inlet P (PSVL10)   Oxidizer System 

2 Engine LOX Inlet T (TTVL10) 1 LOX Pump Head Coeff icient Multiplier (PSIMOPMP) 

3 Engine RP-1 Inlet P (PSRPFV) 2 Main LOX Duct Resistance (RMMCOX) 

4 Engine RP-1 Inlet T (TTRPFV) 3 Main LOX Injector Inlet Duct Resistance (ROLN1) 

  Fuel System 4 Main LOX Injector Resistance (ROINJ) 

1 RP-1 Pump Inlet P (PSVL00) 5 GG LOX Line Resistance (RMGGOX) 

2 RP-1 Flowrate  (WRPTOTL) 6 GG LOX Injector Resistance (RGGOI) 

3 RP-1 Pump Discharge P (PSVL01) 7 GG LOX Flow Heat Transfer (QDOTVL18) 

4 RP-1 GG Inlet P (PSVL09)     

5 RP-1 Manifold P (PTVL05)   Fuel System 

6 RP-1 Manifold T (TTVL05) *  8 Fuel Pump Head Coeff icient Multiplier (PSIMKPMP) 

  Oxidizer System 9 RP-1 Pump Inlet Duct Resistance (RKFL1) 

7 LOX Pump Discharge P (PSOXDS) 10 Main Fuel Line Resistance (RMMCRP) 

8 LOX Flowrate (WOXTOTL) 11 Main Fuel Injector Resistance (RKINJ) 

9 Main OX Line Intermediate P (PSVL13) 12 GG RP-1 Line Resistance (RMGGRP) 

10 GGOV Inlet Pressure  (PSVL15) *  13 GG RP-1 Injector Resistance (RGGKI) 

11 LOX GG Inlet P (PSVL18)     

12 LOX GG Inlet T (TTVL18)   Turbine/ GG System 

13 LOX Dome P (PTVL14)  14 Turbine Exhaust Nozzle Orifice Cd Multiplier (CDGGNZ) 

14 LOX Dome T (TTVL14) *  15 Turbopump Eff iciency Multiplier (PWRFACT) 

  GG/Turbine System     

15 Turbine Inlet T (TTHTGI)   Main Chamber 

16 Turbine Inlet P (PTHTGI) 16 Main Chamber c* Eff iciency Multiplier (ECSMMCHB) 

17 Turbine Discharge P (PTVL22) 17 Nozzle Cd Multiplier (CDNOZL) 

18 Turbine Discharge T (TTHTGD) *     

19 Shaft Speed (SNSHFT)     

  Main Chamber     

20 Main Chamber P (PTMCHY)   *not utilized based on subset selection stabili ty criteria  

21 Thrust (FT15A)     

Flight Hardware 
Parameter Definition 

R3MCOX RMMCOX+ROLN1+ROINJ 

R3MCRP RMMCRP+RKINJ 

R3GGOX RMGGOX+RGGOI 

R3GGFV RMGGRP+RGGKI 

Table 1 - Measurements and hardware parameters considered in GDR analyses of MC-1 engine 

Table 2 - Flight hardware parameter 
combinations 
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Due to the well-determined system restriction of 
the conventional data reduction method, only 21 
(4 inlet and 17 internal) of the 25 measurements 
listed in Table 1 were used to derive 
conventional data reduction results.  In addition, 
the 17 hardware characteristics used in GDR 
analyses were based on, but not identical to, the 
17 hardware parameters estimated by the 
conventional data reduction method.  For 
comparison purposes, corresponding values of 
the 17 hardware characteristics used in GDR 
analyses were computed from conventional 
model results. 
 
Using measurements from each R2 series test, 
time history data reductions were performed 
using both ROCETS-based data reduction and 
GDR.  Although GDR does not have the well-
determined system restriction of conventional 
methods, 17 measurements were also specified 
for GDR analyses in order to facil itate the 
comparison between GDR and ROCETS data 
reduction results.  It should be noted that the 
GDR subset selection procedure eliminated 
precisely those measurements which were not 
used in ROCETS data reduction: GGOV Inlet 
Pressure (PSVL15), RP-1 Manifold Temperature 
(TTVL05), Turbine Discharge Temperature 
(TTHTGD), and LOX Dome Temperature 
(TTVL14).  Time history data reduction 
predictions were derived for each hardware 
characteristic over a sequence of one-second 
time slices beginning six seconds after engine 
ignition and ending at shutdown.  One-second 
average test data were used at each time slice to 
estimate measurement values.  Representative 
reduction results derived from R2-4 test data are 
displayed in Figures 1 and 2.   
 
Figure 1 shows that the ROCETS data reduction 
and GDR predictions for the LOX pump head 
coeff icient multiplier, PSIMOPMP, are virtually 
identical over the entire 154 second interval.  
Discernable, although extremely small , 
differences between predictions of the two 
methods for the R2-4 main chamber c* 
efficiency multiplier, ECSMMCHB, are seen in 
Figure 2.  Uniformly good agreement between 
predictions of the two methods was observed for 
all 17 hardware characteristics over all R2 series 
tests. 
 
Table 3 contains a summary of the average 
absolute error for each of the seventeen hardware 
characteristics over each of the R2 series tests.  
The excellent overall l evel of agreement between 

GDR predictions and ROCETS data reduction 
results is apparent.  Only one hardware 
parameter, the fuel pump inlet duct resistance 
RKFL1, displayed a difference of over 1%, and 
then only for test R2-1.  Only three instances of a 
test average absolute difference above 0.5% were 
observed.   
 
Having established that GDR can provide an 
acceptable level of accuracy for MC-1 engine 
data reduction, it was also important to verify 
that GDR computational efficiency is consistent 
with real-time HM requirements.  The clock time 
required to read the 21 measurements for a 
particular time slice and perform a complete 
GDR analysis to recover the 17 named hardware 
characteristics was measured using data from test 
R2-4.  The clock time required to perform 154 
(one for each 1-second time slice) such reduction 
cycles in sequence using a PC-based computer 
system with an 800 MHz Pentium III processor 
was found to be just over one second.  Therefore, 
the single reduction cycle compute time for GDR 
analysis of the MC-1 engine system using 21 
measurements to predict 17 hardware 
performance characteristics was under 0.01 
seconds.  This was substantiall y smaller than the 
one second monitoring cycle period and served 
to verify GDR computational efficiency 

Average Absolute Er ror (%) Hardware 
Parameter r2-1 r2-2 r2-3b r2-4 

RGGKI 0.036 0.031 0.046 0.056 

RGGOI 0.019 0.142 0.019 0.150 

RKINJ 0.092 0.126 0.135 0.106 

ROINJ 0.044 0.071 0.015 0.024 

CDGGNZ 0.002 0.002 0.002 0.017 

CDNOZL 0.008 0.031 0.021 0.029 

ECSMM CHB 0.017 0.232 0.081 0.059 

PSIMKPMP 0.028 0.059 0.026 0.043 

PSIMOPMP 0.010 0.015 0.004 0.010 

RMM CRP 0.119 0.139 0.149 0.115 

RMM COX 0.042 0.731 0.094 0.136 

RKFL1 1.239 0.171 0.227 0.143 

ROLN1 0.006 0.037 0.004 0.051 

RMGGRP 0.154 0.294 0.092 0.064 

RMGGOX 0.046 0.659 0.098 0.093 

PWRFACT 0.023 0.018 0.005 0.009 

QDOTVL18 0.081 0.086 0.103 0.402 

Table 3 - Average absolute GDR error when 
compared to ROCETS data reduction 
results 
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consistent with HM requirements for the MC-1 
engine system. 
 
Simulated anomaly recovery 
 
The central capabilit y of any HM system is the 
detection and isolation of operating anomalies.  
In the absence of data from an engine system 
experiencing an actual operating anomaly, the 
abili ty to identify simulated failure scenarios 
provides an appropriate test for a data reduction 
tool. 

 
In order to assess the abili ty of GDR to identify 
operating anomalies, a study of responses to 
simulated single source anomalies was 
conducted.  To approximate the measurement 
stream from a single source anomaly, each of the 
17 independent hardware characteristics used in 
reduction studies was individually incremented 
within the ROCETS/MC-1 performance model 
to simulate anomalous function of the associated 
hardware component.  For each simulated single 
source anomaly, the ROCETS/MC-1 

1.02
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Time (secs from star t)

GDR 

ROCETS

Figure 1 - Test R2-4 compar isons of ROCETS data reduction results and GDR predictions for the 
LOX pump head coeff icient multiplier 
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Figure 2 - Test R2-4 compar isons of ROCETS data reduction results and GDR predictions for the 
main chamber c* eff iciency multiplier 
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performance model then returned predicted 
values of the 21 measured parameters employed 
in the reduction process.  These values were 
provided as measurement inputs to GDR.  The 
reduction output was subsequently examined to 
determine the accuracy of individual source 
anomaly recovery. 
 
A representative result for the fuel pump head 
coeff icient multiplier, PSIMKPMP, is presented 
in Figure 3. The performance model inputs used 
to generate the simulated measurements for GDR 
were precisely the R2-4 base values, with the 
exception of PSIMKPMP; PSIMKPMP was set 
at 95% of its base value.  The line in Figure 3 
represents GDR predicted values for the 17 
hardware parameters, expressed as a fraction of 
the R2-4 base case values.  Note that GDR has 
assigned hardware causali ty associated with the 
anomaly case measurements across all hardware 
characteristics, with by far the greatest causali ty 
correctly assigned to PSIMKPMP.   
 
Table 4 displays the magnitude of the single 
source anomaly utili zed for each hardware 
parameter, expressed as a percentage of the R2-4 
base value for that parameter.  In addition, for 
each of the 17 independent hardware 
characteristics, the percentage error in the single 
source anomaly recovery by GDR is displayed.  
The largest observed discrepancy of 2% occurs 
for the Main Fuel Line Resistance, RMMCRP.   
Due to the fact that RMMCRP is actually a 
combination of performance model hardware 
parameters, it is not directly perturbed.  A related 

performance model hardware parameter was 
perturbed by 10%, resulting in a 23.46% increase 
in this resistance.  This large resistance change is 
accurately predicted by GDR.   In general, the 
GDR recovered value of the anomaly 
characteristic is within +/-1% of the generating 
value.  This indicates an excellent abili ty to 
identify the causal source of small scale 
anomalies. 

Hardware 
Parameter Perturbation (%) 

Er ror in GDR 
recovery of 
perturbed 

parameter (%) 

RGGKI 23.46 0.82 

RGGOI 23.46 1.97 

RKINJ 23.46 0.95 

ROINJ 23.46 0.13 

CDGGNZ -5.00 0.14 

CDNOZL -5.00 0.29 

ECSMM CHB -5.00 0.02 

PSIMKPMP -5.00 0.21 

PSIMOPMP -5.00 0.06 

RKFL1 10.00 0.01 

ROLN1 10.00 0.02 

RMGGRP 23.31 0.34 

RMGGOX 23.38 0.70 

RMM CRP 29.94 2.19 

RMM COX 19.93 0.07 

PWRFACT -3.25 0.06 

QDOTVL18 10.00 0.00 

Table 4 - Magnitudes of simulated single 
source anomalies and errors in 
GDR recovery of these anomalies 

0.94

0.96

0.98

1.00

1.02

Figure 3 - GDR recovery of PSIMKPMP anomaly 
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Sensor Elimination Study 
 
 A robust HM strategy must be capable of 
accommodating sensor failures without 
excessive degradation in the accuracy of engine 
health assessment.  To accomplish this, data 
from a malfunctioning sensor must first be 
recognized as emanating from defective 
instrumentation rather than changes in host 
system function, and then eliminated from any 
computational scheme aimed at assessing 
operational health.  Once suspect sensor data 
have been eliminated, the loss of health 
monitoring capabili ty must be evaluated, and 
assessment procedures adjusted to best utilize the 
remaining data.   The comparative tools required 
for identification of sensor malfunction were not 
considered as part of this effort.  However, the 
effect of single sensor data loss on the accuracy 
of GDR results for the MC-1 engine was 
investigated.  Adjustments to the computational 
procedure that improved the accuracy of 
reduction results for specific single sensor data 
loss cases were also identified.  
 
 In order to assess the impact of individual 
sensor failures on GDR predictions of MC-1 
engine operation, a simulation study was again 
performed.  Each of the 17 primary internal 
measurements was individuall y eliminated from 
a specific GDR run.  In most cases, the 
measurement set used in the restricted reduction 
analysis was composed of the remaining sixteen 
primary internal measurements.  For certain 
sensor loss cases, accuracy of the reduction 
results was enhanced by considering fewer 
measurements.  The total number of sensors used 
in performing the final reduction is indicated in 
Table 5.  In all cases where the number is 16, the 
unused measurements were the failed 
measurement in question and the typical four 
measurements eliminated through subset 
selection – PSVL15, TTVL05, TTHTGD and 
TTVL14.  For the three cases where the final 
number of measurements used was 15, the 
recovery accuracy was enhanced when an 
additional measurement was also eliminated. 
 
For several intermediate duct/line pressures; 
namely PTVL05, PSVL09, PSVL13, PTVL14, 
and PSVL18, the loss of sensor data did not 
impact the overall accuracy of GDR predictions.  
This is because the loss of sensor data for these 

measurements was observed to impact only 
resistances proximate to the sensor location.  A 
typical case using R2-4 test data is displayed in 
Figure 4 for the main oxidizer line intermediate 
pressure, PSVL13.  When sensor data for 
PSVL13 are lost, the primary effect is a 
reduction in the abili ty to discriminate between 
changes in the proximate line resistances 
RMMCOX and ROLN1.  However, when the 
resistance sum RMMCOX + ROLN1 is 
examined, the PSVL13-lost and original, full 
measurement suite ROCETS data reduction 
results are virtually identical.  The impact of the 
loss of PSVL13 on GDR predictions for other 
hardware characteristics is negligible.  In effect, 
the loss of PSVL13 has little effect on the 
accuracy of GDR results as long as the effective 
resistance sum RMMCOX + ROLN1 is used to 
replace the component resistances.  All 5 
intermediate duct/line pressures identified above 
exhibited similar behavior which could be 
completely accommodated by resistance 
combinations. 
 

Table 5 - Effect of single sensor data loss on GDR 
analysis procedure and results 

Measure-
ment 

Number of 
measure-

ments used 
by GDR 

0.5% < err or 
≤≤1% 

1% < err or 
≤≤2% error > 2% 

PSOXDS 16   
RMMCOX, 
RMGGOX   

WOXTOTL  15 

ECSMMCHB, 
PSIMOPMP, 

ROLN1 
ROINJ, 

RMGGOX   

WRPTOTL  16 
RKINJ, 

RMMCRP RKFL1   

PSVL00 16     RKFL1 

PSVL01 16     
RMMCRP, 
RMGGRP 

PTMCHY 16 RKINJ     

PTHTGI 16 
RGGKI, 
RGGOI     

TTHTGI 16 
RMGGOX, 
PWRFACT RGGKI RMGGRP 

FT15A 16 
CDNOZL, 

ECSMMCHB     

TTVL18 16       

SNSHFT 15       

PTVL22 16 CDGGNZ    
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The degradation of GDR accuracy associated 
with the loss of a single sensor is characterized in 
Table 5 for all primary MC-1 engine 
measurements.  Loss of predicted hardware 
fideli ty less than 0.5% was considered to be 
benign.  Hardware parameters with errors in 
excess of 2% were considered problematic and 
health assessments related to these parameters 
are not indicated if the associated sensor failure 
occurs.  Health assessments related to parameters 
with errors between 0.5% and 2% should be 
carefully considered if the associated sensor 
failure is identified. 
 
Flight Measurement Set 
 
The ultimate test of an engine health monitoring 
system occurs during flight operations.  Health 
assessment for a sparsely instrumented flight 
engine requires robust tools.  As indicated 
previously, only five internal measurements were 
anticipated for flight-ready MC-1 engines.  
Because thrust and intermediate pressure 
indications were to be absent in flight engines, 
the number of reduction hardware parameters 
was reduced to eight.  This included four of the 
original hardware set as well as the four 
resistance combinations presented in Table 2. 
 

It should be observed that using five internal 
measurements and eight hardware parameters 
specifies the reduction system as 
underdetermined.  The solution of the extended 
GDR optimization problem (6) for 
underdetermined systems is the hardware 
combination that minimizes the shift away from 
the base case hardware values in the least 
squares sense, while enforcing model agreement 
with test values of the measured parameters.  
Assuming base state values represent best 
available estimates for the hardware parameters, 
the GDR solution can be thought of as a type of 
maximum likelihood prediction given measured 
conditions. 
 
In the GDR process, inlet conditions are used to 
correct the off -baseline shift of measured 
properties in response to changing inlet 
propellant properties.  One method of 
augmenting this correction is to treat data from 
the engine acceptance test in the same manner as 
inlet properties are used.  Since MC-1 engine 
systems would be expected to undergo brief 
acceptance testing prior to fli ght, the availabili ty 
of acceptance test data for flight operations is 
assumed.  For the MC-1 engine, the use of 
simulated acceptance test data for the oxygen 
and RP-1 flow rates, WOXTOTL WRPTOTL, 
was found to improve certain predictions.   

0.00022

0.00023

0.00024

0.00025

0 20 40 60 80 100 120 140 160

Time (secs from star t)

GDR - PSVL13 missing

ROCETS

Figure 4 - Behavior of RMM COX+ROLN1 with and without the loss of sensor measurement PSVL13, 
the main oxidizer line intermediate pressure 
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Figure 5 - GDR flight measurement results for the LOX pump head coeff icient multiplier - with 
and without acceptance test information 

GDR analyses of MC-1 engine operation in test 
R2-4 were performed using only the five internal 
measurements and the eight hardware parameters 
appropriate for flight.  Representative results are 
displayed in Figures 5 and 6.  Both figures 
display standard ROCETS data reduction results 
using all 17 primary internal measurements and 
GDR predictions using only flight set 
measurements.  GDR predictions with and 
without acceptance test information are 
displayed.  For purposes of this study, the 
acceptance test value for each propellant flow 
was assumed to be the 20 to 23 second average 
of the R2-4 test data. 

It is obvious from examination of Figure 5 that 
use of propellant acceptance test information 
improves both trending and accuracy for the 
oxygen pump head coefficient multiplier 
PSIMOPMP.  Similar comments are appropriate 
for the main chamber c* efficiency multiplier 
results displayed in Figure 6.  The fluctuation of 
GDR flight reduction results is observed to be 
muted relative to standard full set predictions, 
especially when acceptance test propellant flows 
are used. 
 
Table 6 provides values of the R2-4 average 
absolute prediction error obtained for each 
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GD R  - standard

GD R  - w / acc. test

RO CET S
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1.03

1.04

1.05
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GDR - w/ acc. Test

ROCETS

Figure 6 – GDR flight measurement results for the main chamber c* eff iciency multiplier – 
with and without acceptance test information 
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hardware parameter.  In this case, the average 
absolute error is defined as the average of the 
absolute difference between GDR flight set 
reduction results and ROCETS full set data 
reduction results.  Absolute error values are 
prescribed for GDR results generated both with 
and without acceptance test propellant flow 
information.  Using acceptance test flows, only 
two parameters exhibit an average absolute error 
above 0.5%, while four have errors exceeding 
0.5% without considering these flows.  It is also 
observed in Table 6 that the standard deviation 
of the absolute error is in general improved using 
acceptance test flows.  Considering the limited 
number of internal measurements available in 
flight, these results are considered to be very 
good. 
 

Summary 
 
The GDR process is a model-based inference 
tool that is applicable to any system whose 
performance can be described by physical 
relations and hardware empiricisms with tunable 
parameters, such as a rocket engine.  It can 
provide exceptionally fast health information for 
real-time decision-making by an on-board 
control system or a control room operator. 
 
For the fixed-orifice MC-1 engine, the results 
presented in this paper support the use of GDR 
as a health monitoring tool.  The GDR strategy 
employed had been modified to better account 

for system nonlinearity.  The introduction of 
nonlinearity, through the parameter functions 
described in problem statement (6), preserved the 
computational eff iciency of linearity while 
improving system stabili ty and accuracy.   
 
GDR results showed excellent agreement with 
conventional data reduction results.  Clear 
indication of small-scale anomaly recovery was 
presented, although a more thorough evaluation 
of this capabili ty would require data from 
realistic scenarios exhibiting multi-component 
anomaly operation.  Reduction flexibili ty in the 
presence of single sensor failures is also 
indicated.  The consequences of multiple 
simultaneous sensor failures and measurement 
bias need to be investigated further.   For the 
MC-1 engine system, a small set of flight 
measurements provided an adequate basis for 
recovery of pertinent parameters describing 
hardware function.  Flight measurement results 
were obtained by using an underdetermined 
system of defining equations and the closure 
principle defined by the extended GDR 
optimization problem.   
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Without flow 
averages from 
acceptance test 

With flow averages 
from acceptance test 

Hardware 
Parameter 

Average 
Absolute 
Error (%) 

Standard 
Deviation 

Average 
Absolute 
Error (%) 

Standard 
Deviation 

R3MCOX 0.986 0.006 0.303 0.003 

R3MCRP 1.100 0.008 1.28 0.005 

R3GGOX 0.107 0.001 0.230 0.001 

R3GGRP 0.059 0.000 0.0700 0.000 

PWRFACT 0.294 0.002 0.612 0.003 

ECSMM CHB 0.845 0.004 0.286 0.002 

PSIMKPMP 0.270 0.002 0.240 0.002 

PSIMOPMP 0.617 0.004 0.287 0.002 

Table 6 - GDR accuracy using only flight 
measurements 


